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Abstract
The asymptotic behaviour of the superpotential of general SUSY
transformations for a coupled-channel Hamiltonian with different thresholds
is analysed. It is shown that asymptotically the superpotential can tend to
a diagonal matrix with an arbitrary number of positive and negative entries
depending on the choice of the factorization solution. The transformation
of the Jost matrix is generalized to ‘non-conservative’ SUSY transformations
introduced in Sparenberg et al (2006 J. Phys. A: Math. Gen. 39 L639).
Applied to the zero initial potential the method permits the construction of
superpartners with a nontrivially coupled Jost matrix. Illustrations are given
for two- and three-channel cases.

PACS numbers: 03.65.Nk, 24.10.Eq

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the context of quantum scattering inverse problems, not much is known about coupled-
channel problems with threshold differences, i.e., inelastic problems (see paragraph IX.4
of [1] and references therein). Though well-known single-channel methods based on the
Marchenko or Gel’fand–Levitan approaches have been generalized to these coupled-channel
problems, no sufficiently simple method for inverting experimental data has been deduced from
these generalizations. This may be explained by the fact that in its general form the method
requires knowing the whole set of scattering data and, in particular, the whole scattering
(S) matrix should be known, whereas only the open-channel submatrix is accessible from
experimental data. Another reason is related to the complicated character of the Gel’fand–
Levitan–Marchenko equation which in this case was solved only numerically [2]. In the
one-channel case the second difficulty was overcome with the help of the supersymmetric
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quantum mechanics (SUSY QM) approach (see e.g. [3, 4]) which is equivalent to the Gel’fand–
Levitan–Marchenko method when the kernel of the integral equation is degenerate [5, 6].
Moreover, when applied to the zero initial potential, these transformations lead to exactly
solvable potentials with scattering matrices being arbitrary-order rational functions of the
wave number and hence providing excellent fits of experimental data [7]. Until recently,
however, generalizing such supersymmetric transformations of the zero potential to inelastic
coupled-channel problems seemed to be impossible as a matter of principle [8–10]. Thus,
experimental data with coupling did not seem accessible to this method.

Fortunately, as it was recently announced [11], this strong limitation is explained by
an unnecessary condition imposed on transformation functions used up to now. Usual
supersymmetric transformations [3, 5–10] can be described in terms of transformation
operators relating solutions of two Sturm–Liouville problems, and hence keeping boundary
conditions unchanged; this is why we call them ‘conservative’. Changes in the spectrum
due to such transformations may correspond only to elements from the kernel of either the
transformation operator or its adjoint form. This is just the reason why the spectrum of
two supersymmetric partners may differ only by a finite number of levels. Although the
existence of transformations of another kind, breaking boundary conditions, is known for
some time (see, e.g. [12]), their use in the single-channel case has been limited to a very
specific application [13], where usual transformations happen to be sufficient. In the inelastic
coupled-channel case, on the contrary, these ‘non-conservative’ transformations seem to be of
fundamental importance as they lead to exactly solvable potential models with non-trivially
coupled S-matrices. We hope that these new transformations may become a keystone for an
inversion procedure both simple enough for practical realization and accurate enough to fit
experimental data with a good precision.

This renewal of interest for supersymmetric transformations of inelastic coupled-channel
problems implies that a general study of their properties is necessary. In particular, the
Jost-matrix transformation, from which the transformed S-matrix can be deduced, should be
known in the general case. In [11], it is shown that the Jost-matrix modification depends
on the value of the superpotential matrix U(r) at infinity, which in turn depends on the
asymptotic behaviour of the factorization solution. In the single-channel case, U(∞) is a
positive (resp. negative) real number when the factorization solution increases (resp. decreases)
at infinity. In the coupled-channel case, U(r) is a matrix and its asymptotic behaviour
is much more complicated. The main goal of the present work is to study carefully this
behaviour.

Section 2 reviews definitions from multichannel scattering theory. As an introduction
to section 3 we first review briefly general properties of multichannel supersymmetric
transformations and then we analyse the maximal number of arbitrary parameters entering
into the superpotential and as a result into the transformed potential. Next we discuss in a
detailed way the superpotential asymptotic behaviour proving our main theorem and give a
closed expression for the transformed Jost solution and the Jost function. In section 4 we
derive a general form of the superpotential which is a SUSY partner of the zero potential.
Section 5 illustrates these findings by examples and comparisons with existing results from
the literature. Section 6 contains conclusions and perspectives.

2. Multichannel scattering

Let us first define our notation and briefly recall some notions of scattering theory [14, 15]
used below. We consider a multichannel radial Schrödinger equation that reads in reduced
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units:

Hψ(k, r) = k2ψ(k, r) H = − d2

dr2
+ V, (1)

where r is the radial coordinate, V is an N × N real symmetric matrix, and ψ may be
either a matrix-valued or a vector-valued solution. By k we denote either a point in the
space C

N, k = {k1, . . . , kN } , ki ∈ C such that Im ki � 0, or a diagonal matrix with the
non-vanishing entries ki, k = diag(k1, . . . , kN). The complex wave numbers ki are related to
the centre-of-mass energy E and the channel thresholds �1, . . . ,�N , which are supposed to
be different from each other, by

k2
i = E − �i. (2)

We do not assume a fixed order of channels since any necessary order can be achieved by
a suitable permutation of the rows in the Schrödinger equation (1). For simplicity we will
limit ourselves to unequal thresholds here and defer the general study of equal and unequal
thresholds to a future work. We will also assume potential V to be short ranged at infinity,
i.e., there exists an ε > 0 such that∫ ∞

0
eεr |Vij (r)| dr < ∞, (3)

where Vij , i, j = 1, . . . , N are entries of matrix V . Under such assumptions, the Schrödinger
equation has two N × N matrix-valued solutions f (±k, r) (Jost solutions) such that

f (±k, r) →
r→∞ exp(±ikr) = diag[exp(±ik1r), . . . , exp(±ikNr)]. (4)

The columns of these matrices form a basis in the 2N -dimensional solution space of the
Schrödinger equation with a given value of E. In general, these solutions are complex
and satisfy the symmetry property f (k, r) = f ∗(−k∗, r), where asterisk denotes complex
conjugation; for real energies below all thresholds, k = −k∗ and the Jost solutions are real.

Next we define the regular solution ϕ(k, r) and the irregular solution η(k, r) by their
behaviour at the origin. For the sake of simplicity, we limit ourselves to bounded s-wave
potentials, in which case these solutions satisfy

ϕ(k, 0) = 0 ϕ′(k, 0) = I (5)

η(k, 0) = I η′(k, 0) = 0, (6)

where prime means derivation with respect to r and I denotes the identity matrix. This
definition shows that the columns of these matrices also form a basis in the solution space of
the Schrödinger equation. In terms of the Jost solutions, these solutions read

ϕ(k, r) = 1

2i
[f (k, r)k−1F(−k) − f (−k, r)k−1F(k)] (7)

η(k, r) = 1

2i
[f (k, r)k−1G(−k) − f (−k, r)k−1G(k)], (8)

where F(k) is the Jost matrix

F(k) = f T (k, 0) (9)

with T meaning transposition, and matrix G(k) is defined as

G(k) = −[f ′(k, 0)]T . (10)
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Proving (7) and (8) requires calculating, both at the origin and at infinity, the Wronskian
W [ϕ(k, r), f (k, r)] ≡ ϕT (k, r)f ′(k, r) − [ϕ′(k, r)]T f (k, r), which generalizes the usual
definition of the Wronskian of one-component functions to N channels, and the Wronskian
W [η(k, r), f (k, r)]. Equation (1) implies that the value of these Wronskians is independent
of r, as well as that of W [f (−k, r), f (k, r)] = 2ik. For real energies, both solutions ϕ and
η are purely real because they satisfy a system of differential equations with real coefficients
and real boundary conditions. For energies below all thresholds or for energies above all
thresholds, this can also be directly checked in (7) and (8), using the symmetry properties
F(k) = F ∗(−k∗) and G(k) = G∗(−k∗).

The Jost matrix defines both scattering and bound states properties. The scattering matrix,
which is symmetric, reads

S(k) = k−1/2F(−k)F−1(k)k1/2 = k1/2[F−1(k)]T F T (−k)k−1/2. (11)

Bound-state energies, E = Em,m = 1, . . . , M , correspond to zeros of the determinant of the
Jost function, det F(iκm) ≡ 0, such that Re κm,i > 0, Im κm,i = 0 with Em = −κ2

m,i + �i, i =
1, . . . , N below all thresholds. For potentials satisfying the above assumptions, the number
M of bound states is finite.

3. Multichannel SUSY transformations

According to the multichannel SUSY approach [8, 9], applying the transformation operator

A− = − d

dr
+ U(r) (12)

to solutions ψ(k, r) of (1) leads to solutions ψ̃(k, r) of the new equation

H̃ ψ̃(k, r) = k2ψ̃(k, r) H̃ = − d2

dr2
+ Ṽ (r), (13)

where Ṽ , like V , is supposed to be a real, short-ranged, bounded and symmetric N × N

matrix and ψ̃ , like ψ , may be either a matrix-valued or a vector-valued function. The matrix-
valued function U (usually called superpotential) is expressed in terms of a matrix-valued
solution of (1) at a fixed value of E = E below all thresholds (this parameter is known as the
factorization constant), which we denote σ and call the transformation function or factorization
solution. Defining the corresponding wave number diagonal matrix κ by its positive elements
κi = √

�i − E , one has

Hσ(r) = −κ2σ(r) (14)

and

U(r) = σ ′(r)σ−1(r). (15)

Then for E �= E one has ψ̃ = A−ψ. The specific form (12), (15) of the transformation operator
A− results in the potential Ṽ from (13) being of the form

Ṽ (r) = V (r) − 2U ′(r). (16)

To have a real and symmetric potential (16) we restrict σ to be real and such that its self-
Wronksian vanishes, W(σ, σ ) = 0.

For E = E a particular solution of (13) is

φ̃(κ, r) = (σ T )−1(r) H̃ φ̃(κ, r) = −κ2φ̃(κ, r). (17)
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Other solutions ψ̃ corresponding to the same E may be found as usual from the property
W(φ̃, ψ̃) = −I , which gives

ψ̃(κ, r) = (σ T )−1(r)

∫ r

r0

σT (s)σ (s) ds H̃ ψ̃(κ, r) = −κ2ψ̃(κ, r). (18)

The conventional SUSY transformations have the property that if ψ(0) = 0 then
ψ̃(0) = (A−ψ)r=0 = 0 which requires some additional limitation on the transformation
function σ(r). Following [11] rejecting this limitation leads to losing this property of the
transformation operator A−. Such transformation operators violate the vanishing behaviour
of the solution at the origin and we call them ‘non-conservative’. Nevertheless, since A−

transforms solutions of the initial differential equation into solutions of the transformed
equation the full information about the new Hamiltonian H̃ is accessible. In particular
its Jost function and S-matrix can be constructed explicitly. Below we will concentrate our
attention mainly on non-conservative transformations although our main result (theorem 2 in
section 3.2) is valid for the general case.

3.1. Number of arbitrary parameters in superpotential

First we discuss the general form of the transformation function σ introduced in the previous
section. We note that the general vector-valued solution of the Schrödinger equation (1)
contains 2N integration constants and can always be presented as a linear combination of
2N fixed linearly independent solutions. In general, the transformation function σ may be
composed of N such solutions. Therefore it may contain 2N2 arbitrary parameters at most.
But as far as the new potential (16) is concerned there is a big redundancy between these
parameters. Indeed, because of the specific form of the superpotential (15) a multiplication of
the transformation function σ on the right by a non-singular constant matrix does not affect
the superpotential. A minimal set of arbitrary parameters is given by

Theorem 1. Given the initial potential V (r), fixed thresholds and factorization energy, the
most general transformed potential Ṽ (r) is completely determined by the value U(0) of the
symmetric superpotential matrix at the origin. It is calculated by formulae (16) and (15)
where

σ(r) = η(iκ, r) + ϕ(iκ, r)U(0) (19)

and contains N(N + 1)/2 arbitrary real parameters which are the entries of matrix U(0).

Proof. The general matrix-valued solution of the Schrödinger equation

σ(r) = η(iκ, r)C1 + ϕ(iκ, r)D1, (20)

with real matrices C1 and D1 produces the most general real superpotential (15) and, hence,
potential (16). Definitions (5) and (6) then imply that det σ(0) = det C1 vanishes if and only
if matrix C1 is singular. In this case σ(0) is not invertible and the superpotential and hence the
transformed potential Ṽ become singular at the origin; as stated above, we want to avoid this
case here and therefore we impose the condition det C1 �= 0. It is now clear that in this case
matrix C1 does not affect the superpotential U as given in (15) since we can multiply (20) by
C−1

1 on the right, which leaves the superpotential unaffected or, equivalently without losing
generality, put C1 = I . The superpotential U and hence the transformed potential Ṽ thus only
depend on the N2 parameters appearing in D1.

This simplified writing allows us to express easily the other condition imposed on the real
transformation function (20), namely the symmetry of U and Ṽ . As mentioned above, this
happens when W(σ, σ ) = 0, which gives N(N − 1)/2 equations for the elements of matrix
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D1. The value of this Wronskian being r-independent, (20) can be used to calculate it at the
origin with (5) and (6) which leads to

W [σ(r), σ (r)] = D1 − DT
1 = 0. (21)

The superpotential and transformed potential are thus symmetric when D1 is chosen symmetric.
This can also be checked on the value of the superpotential at the origin which reads, according
to (5), (6), (15) and (20), U(0) = D1. �

To calculate the Jost matrix for the transformed potential according to (9) we need to know
its Jost solution which is defined by the asymptotic behaviour (4). Usually a supersymmetry
transformation changes this behaviour. So we have to analyse the asymptotic behaviour of the
function f̃ (k, r) = A−f (k, r) which is mainly defined by the asymptotics of superpotential
U(r).

3.2. Asymptotic behaviour of superpotential

According to (15), the asymptotic behaviour of the superpotential depends on the asymptotic
behaviour of the factorization solution. This time, in place of (20), we choose to write the
factorization solution as

σ(r) = f (−iκ, r)κ−1/2C2 + f (iκ, r)κ−1/2D2 (22)

with C2 and D2 being some constant matrices; factor κ−1/2 is introduced for further
convenience. We note that matrices C2 and D2 should satisfy the condition

DT
2 C2 − CT

2 D2 = 0 (23)

following from the symmetry property of the superpotential W [σ(r), σ (r)] = 0.
We show below that the asymptotic behaviour of the superpotential crucially depends on

the structure of matrix C2. In particular, it depends on the rank of C2 and if rank C2 = R < N

it depends on an interrelation between the values of thresholds and linear dependence between
rows of C2. This interrelation becomes more transparent for a specific order of channels.
Therefore before going further we will first rearrange the channels taking into account the
structure of matrix C2. Our main aim in this reordering is to collect together both all linearly
independent rows of matrix C2 and its linearly independent columns. As it was already noticed
changing channels corresponds to going to another starting Hamiltonian (1). But evidently it
corresponds to the same physical system after the reordering. The permutation of columns
simultaneously both in C2 and in D2 is equivalent to a multiplication on the right of the whole
factorization solution σ by a constant non-singular matrix which evidently does not change
the superpotential U as given by (15).

We rearrange the rows of C2 together with the corresponding channels in the following
way. The first channel with wavenumber κ ′

1 and, hence, the first row of the reordered matrix
(we denote C3) correspond to the largest threshold related to a non-vanishing row of C2.
The second channel with wavenumber κ ′

2 and, hence, the second row of the new matrix C3

correspond to the largest remaining threshold related to a row of C2 linearly independent of
the first row of C2. At each next step i � R, a new channel with wavenumber κ ′

i and row i of
C3 corresponds to the largest remaining threshold related to a row of C2 linearly independent
of the previous rows of C3. The reordering ends when the first R rows of C3 become linearly
independent. All remaining rows of C2 are transferred to C3 without changes. As mentioned
above we now permute columns in C3 to have its upper left R × R block non-singular thus
obtaining matrix C. Matrix D2 after all these permutations is transformed into D.



Supersymmetric transformations for coupled channels with threshold differences 4231

The diagonal wavenumber matrix is written as

κ =
(

κ ′ 0

0 κ ′′

)
, (24)

where κ ′ is the R × R diagonal block after the reordering and κ ′′ is the (N − R) × (N − R)

diagonal block containing the remaining wavenumbers. Such a structure of C,D and
wavenumber matrices will be assumed till the end of the paper.

Now we can formulate our main theorem.

Theorem 2. When r → ∞, if rank C = R, the superpotential has the asymptotic form

U(r) → diag(uii) (25)

uii = +κi i = 1, . . . , R (26)

uii = −κi i = R + 1, . . . , N. (27)

In order to prove the theorem, we first reduce C and D to canonical forms, simplest as far
as the superpotential (15) is concerned but reflecting on the one hand the singular character of
matrix C and on the other hand the non-singularity of the whole factorization solution σ(r).
This is performed in the next lemma.

Lemma 1. Matrices C and D can be transformed by right multiplication with a non-singular
square matrix T into the canonical forms

CT =
(

I 0

Q0 0

)
DT =

(
X0 −QT

0

0 I

)
, (28)

where I denotes the R × R unit matrix in CT and the (N − R) × (N − R) unit matrix in DT

and X0 is a symmetric matrix, XT
0 = X0. Matrix Q0 verifies the following property. For any

i � R and j > R such that the inequality κ ′
i < κ ′′

j holds one has

q0
ji = 0, (29)

where q0
ji are entries of matrix Q0.

Proof. By construction the R × R upper left block M of C is invertible. Since the rank of C
is R, the last N − R columns of C are linear combinations of the first R ones. This means that
there exists an R × (N − R) matrix P such that

C

(
P

−I

)
= 0, (30)

where I is the (N − R) × (N − R) unit matrix. Similarly, for the rows, there exists an
(N − R) × R matrix Q0 such that

(Q0 −I )C = 0. (31)

Hence matrix C can be written as

C =
(

M MP

Q0M Q0MP

)
(32)

or

C =
(

I 0

Q0 0

)(
M 0

0 I

) (
I P

0 −I

)
(33)
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and

CT1 =
(

I 0

Q0 0

)
T1 =

(
I P

0 −I

) (
M 0

0 I

)−1

. (34)

The linear dependence of the rows is not modified by the multiplication of C by a
nonsingular T1 after which row i(� R) contains only one non-vanishing element in column i.
Property (29) now follows from the fact that by construction row j is a linear combination of
all previous rows i = 1, 2, . . . of C such that κ ′

i > κ ′′
j .

Instead of matrix D2 the product

DT1 =
(

D11 D12

D21 D22

)
(35)

now appears in (22). According to (23) the symmetry property of the superpotential is
translated into the following conditions:

D11 − DT
11 = DT

21Q0 − QT
0 D21 (36)

D12 = −QT
0 D22. (37)

Equation (37) together with form (34) of CT1 implies that if D22 in (35) is singular, the
function σ(r) given in (22) becomes singular for all r, a case we would like to avoid here so
that we necessarily assume D22 to be invertible. Moreover, using (36) and (37) we rewrite
matrix DT1 as

DT1 =
(

X0 −QT
0

0 I

) (
I 0

D21 D22

)
, (38)

where we denoted X0 = D11 + QT
0 D21. Finally, we can define T = T1T2 where T1 is given

by (34) and T2 is the inverted second factor in the right-hand side of (38) which keeps
unchanged matrix CT1; the condition XT

0 = X0 follows from (36). �

In the next lemma we establish an important property of the matrix-valued function Q(r)

which will appear in the asymptotic form of the factorization solution.

Lemma 2. For κ ′, κ ′′ and Q0 defined as in lemma 1, the (N − R) × R matrix

Q(r) = eκ ′′rQ0 e−κ ′r (39)

tends to zero when r tends to infinity.

Proof. A matrix element of Q is given by

qji(r) = q0
ji e(κ ′′

j −κ ′
i )r . (40)

From lemma 1, either the exponential tends to zero or coefficient q0
ji vanishes. �

Now we can prove theorem 2.

Proof. According to (4), the factorization solution has the following asymptotic behaviour

σ(r) →
r→∞ σas(r) = κ−1/2[eκrC + e−κrD]. (41)

Recalling that C and D here have canonical forms (28) we get

σas(r) = κ−1/2

(
I + X −QT

Q I

) (
eκ ′r 0

0 e−κ ′′r

)
, (42)
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where Q is given by (39) and matrix

X(r) = e−κ ′rX0 e−κ ′r (43)

vanishes at infinity. The derivative of (42) can be written as

σ ′
as(r) = κ1/2

(
I − X QT

Q −I

) (
eκ ′r 0

0 e−κ ′′r

)
. (44)

Hence, for U one has the following asymptotic behaviour

U(r) →
r→∞ Uas(r) = κ1/2

(
I − X QT

Q −I

) (
I + X −QT

Q I

)−1

κ1/2. (45)

From lemma 2 and (43) one obtains for r → ∞,

Uas(r) → κ

(
I 0

0 −I

)
, (46)

which concludes the proof. �

Corollary 1. If the thresholds are ordered such that κ1 > κ2 > · · · > κN and matrix C has
rank R the number of arbitrary parameters in the superpotential is R(R + 1)/2 + R(N − R).

Proof. For the given order of thresholds all q0
ji may be chosen different of zero according

to lemma 1. Moreover, the parameters enter in the superpotential only through matrices X0

and Q0. �

3.3. Jost-matrix transformation

After the asymptotics of the superpotential is found we are able to calculate both the Jost
solution and the Jost matrix for the transformed potential.

Theorem 3. The Jost matrix F̃ (k) of the transformed potential Ṽ reads, in terms of the Jost
matrix F(k) and the function G(k) (10) of the initial potential,

F̃ (k) = [U(∞) − ik]−1[F(k)U(0) + G(k)]. (47)

Proof. According to theorem 2 the Jost solution of the transformed potential reads

f̃ (k, r) = A−f (k, r)[U(∞) − ik]−1 (48)

as seen with (12) and (4). The theorem then follows from definitions (9) and (10). �

4. SUSY partners of V (r) ≡ 0

The zero initial potential is important since in this case compact analytic expressions are
possible both for the transformed potential and for its Jost function. The initial Jost solution
in this case is simply the exponential f (k, r) = exp(ikr) and the initial Jost function is
the identity matrix, F(k) = I . Hence, G(k) = −ik. The regular solution has the form:
ϕ(k, r) = sin(kr)k−1 and the irregular solution is written as η(k, r) = cos(kr). The
factorization solution regarding theorem 1 has the form

σ(r) = cosh(κr) + sinh(κr)κ−1U(0) (49)

= 1
2 eκr [I + κ−1U(0)] + 1

2 e−κr [I − κ−1U(0)]. (50)
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Another parametrization corresponds to lemma 1

σ(r) = κ−1/2[eκrC + e−κrD] (51)

with an appropriate choice of matrices C and D.

Proposition 1. Let I be the R × R identity matrix, matrices X0 and Q0 be chosen according
to lemma 1, Q(r) be defined by (39) and X(r) by (43). If the parameters are such that
det Y (r) �= 0 ∀r ∈ [0,∞), where

Y (r) = I + X(r) + QT (r)Q(r) (52)

then the potential Ṽ (r) = −2U ′(r) with

U = −κ + 2κ1/2

(
Y−1 Y−1QT

QY−1 QY−1QT

)
κ1/2 (53)

is a (non-conservative) SUSY partner of V (r) ≡ 0 and has the Jost solution

f̃ (k, r) = [U(r) − ik] eikr [U(∞) − ik]−1 (54)

and the Jost function

F̃ (k) = [U(∞) − ik]−1[U(0) − ik], (55)

where U(∞) may be found from (25)–(27).

Proof. First we note that the function σ(r) = σas(r) given in (41) is just the function (51) and,
hence, it can be taken as a transformation function to produce a SUSY partner of V (r) ≡ 0.
For C and D in block forms (28) the superpotential is given in (45). From here after some
algebra one gets (53). Expressions (54) and (55) for the Jost solution and the Jost function
correspond to (48) and (47) for the zero initial potential, respectively. �

Corollary 2. For X0 = 0 the superpotential (53) can be written as

U = κ − 2κ1/2QT
r

(
QrQ

T
r

)−1
Qrκ

1/2 (56)

= −κ + 2κ1/2Qc

(
QT

c Qc

)−1
QT

c κ1/2, (57)

where Qr and Qc are row and column block matrices written in terms of Q (39) as
Qr = (Q,−I ), where I is the (N − R) × (N − R) identity matrix, QT

c = (I,QT ), where I is
the R × R identity matrix.

Proof. Using the property

Q[I + QT Q]−1 = [I + QQT ]−1Q (58)

one obtains from (53):

U = −κ + 2κ1/2

(
I QT

Q QQT

)(
I + QT Q 0

0 I + QQT

)−1

κ1/2 (59)

= κ − 2κ1/2

(
QT Q −QT

−Q I

) (
I + QT Q 0

0 I + QQT

)−1

κ1/2. (60)

Equations (56) and (57) are nothing but compact forms of (60) and (59), respectively. �
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For two particular cases corresponding to rank C = N − 1 and rank C = 1 either (56)
or (57) takes a particularly simple form since in one case Qr is a row and in the other case Qc

is a column. The explicit expressions are given in the following corollary:

Corollary 3. Let channels be ordered such that κ1 > κ2 > · · · > κN−1. Let also Q be a row,
Q = (q1, . . . , qN−1), qi = q0

i exp(κN − κi)r , where q0
i = 0 for any i such that κN > κi and

arbitrary otherwise. Then the superpotential has the following block form:

U = κ − 2

1 + QQT
κ1/2

(
QT Q −QT

−Q 1

)
κ1/2, (61)

where QT Q is an (N − 1) × (N − 1) matrix with entries qiqj , i, j = 1, . . . , N − 1.
Let us now order only the first channel such that κ1 > max(κ2, . . . , κN) and QT be a row

QT = (q2, . . . , qN), qi = q0
i exp(κi − κ1)r . Then the superpotential may be written as

U = −κ +
2

1 + QT Q
κ1/2

(
1 QT

Q QQT

)
κ1/2, (62)

where QQT is an (N − 1) × (N − 1) matrix with entries qiqj , i, j = 2, . . . , N .

Proof. The statement follows from lemma 1 and corollary 2. For the first part of the statement
rank C = N − 1 whereas for the second part rank C = 1. �

Another simplification occurs for rank C = N and a particular choice of matrix X0.

Corollary 4. Let X0 be a column of N arbitrary real parameters and X = exp(−κr)X0. Then
the superpotential reads

U = κ − 2

1 + X T X
κ1/2XX T κ1/2. (63)

Proof. Choosing rank C = N (meaning that Q0 = 0) and X0 = X0X T
0 , we have Y = I +XX T .

Using the property (XX T )2 = (X T X )XX T one gets Y−1 = I − (1 + X T X )−1XX T . The
statement follows now from (53). �

5. Examples

Let us now illustrate the theorems and proposition 1 we have just established by some exactly
solvable examples, supersymmetric partners of V (r) ≡ 0.

5.1. The 2 × 2 model with rank C = 2 (Cox potential)

Let us start from a two-channel problem.
According to theorem 1 we choose the transformation function as given in (50) with the

maximal number of arbitrary parameters included in

U(0) =
(

α1 β

β α2

)
. (64)

Taking (50) into account, the condition rank C = 2 reads

(κ1 + α1)(κ2 + α2) − β2 �= 0. (65)
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Because of the simple character of the transformation function we easily find the superpotential
according to (15). Its off diagonal elements have the form: u12 = u21 = β/ det σ . For the
first diagonal element one obtains

u11 = cosh(κ2r)

det σ
[α1 cosh(κ1r) + κ1 sinh(κ1r)]

+
sinh(κ2r)

κ2 det σ
[(α1α2 − β2) cosh(κ1r) + κ1α2 sinh(κ1r)]. (66)

Here

det σ = α2

κ2
cosh(κ1r) sinh(κ2r) +

α1

κ1
cosh(κ2r) sinh(κ1r)

+ cosh(κ1r) cosh(κ2r) +
α1α2 − β2

κ1κ2
sinh(κ1r) sinh(κ2r). (67)

The element u22 is obtained from (66) by the replacement κ1 ↔ κ2 and α1 ↔ α2. According
to (16) the transformed potential is simply twice the derivative of these expressions with the
opposite sign.

Since rank C = 2, theorem 2 states that no negative entries in the asymptotic form of the
superpotential can appear so that U(∞) = κ = diag(κ1, κ2) which can also be checked by a
direct calculation. Applying now theorem 3 we find the Jost matrix for this potential

F̃ (k) =




α1 − ik1

κ1 − ik1

β

κ1 − ik1

β

κ2 − ik2

α2 − ik2

κ2 − ik2


 . (68)

We note that up to a change of parameters we obtain one of the two-channel Bargmann
potentials previously found by other means [16].

The same superpotential may be rewritten with another parametrization. According to
proposition 1 for rank C = N the superpotential reads U = −κ + 2κ1/2(I + X)−1κ1/2 with
X given by (43) the elements of which are xij = exp(−κir − κj r)x

0
ij , i, j = 1, 2. Its more

explicit form is

U = −κ +
2

(1 + x11)(1 + x22) − x2
12

κ1/2

(
1 + x22 −x12

−x12 1 + x11

)
κ1/2. (69)

After the change of the parameters

x0
11 = 1

det[U(0) + κ]
[β2 − (α1 − κ1)(α2 + κ2)] (70)

x0
22 = 1

det[U(0) + κ]
[β2 − (α1 + κ1)(α2 − κ2)] (71)

x0
12 = −2β

√
κ1κ2

det[U(0) + κ]
(72)

one recovers the previous result.
Two explicit examples of this 2 × 2 model are given in figures 1 and 2. Part (a) of each

figure shows the potential while part (b) shows the eigenphase shifts δ1, δ2 and the mixing
parameter ε [15]. For these examples, we have chosen the thresholds

�1 = � = 10, �2 = 0, (73)
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Figure 1. 2 × 2 exactly solvable potential (a) and scattering matrix (b) for the choice of
parameters (73)–(75) and κ2 = 3 (rank C = 2).
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Figure 2. Same as figure 1 but for κ2 = 2.2 (rank C = 2).

which implies that the factorization energy E and wave number {κ1, κ2} are related by

κ2
1 = � − E > κ2

2 = −E . (74)

In both cases, the value of the superpotential at the origin (64) is chosen as

U(0) =
(

−2 0.6

0.6 −2

)
, (75)

while the factorization wave number is κ2 = 3 and κ2 = 2.2 in figures 1 and 2, respectively.
Comparison of figures 1(a) and 2(a) shows that the choice of factorization energy strongly
modifies the potential. In contrast, figures 1(b) and 2(b) show that this choice does not strongly
affect the scattering matrix, which always displays a Feshbach resonance at an energy of about
6.3 and a large negative slope of δ2 at zero energy and of δ1 above threshold. The eigenphase
shifts and mixing parameter are only a bit smaller in figure 2(b) than in figure 1(b).

5.2. The 2 × 2 model with rank C = 1

In the previous N = 2 example, matrix C has rank 2. Let us now consider the case, not allowed
in [16], where rank C is 1. Our supersymmetric formalism, on the contrary, is also valid in
this case. Both matrices Q0 and X0 defined in lemma 1 are numbers, Q0 ≡ q0, X0 ≡ x0, so
that Q(r) ≡ q(r) = q0 exp(κ2r −κ1r) and X(r) ≡ x(r) = x0 exp(−2κ1r). Choosing κ1 > κ2
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Figure 3. Same as figure 1 but for κ2 ≈ 2.194675 . . . (rank C = 1).

and x0 > −1 − q2
0 we get from (53)

U =
(

a1 b

b a2

)
(76)

with

a1 = 1 − x − q2

1 + x + q2
κ1 a2 = −1 + x − q2

1 + x + q2
κ2 b = 2q

√
κ1κ2

1 + x + q2
. (77)

It is not difficult to check the condition rank C = 1 (cf (65)):

(κ1 + α1)(κ2 + α2) − β2 = 0, (78)

where α1,2 = a1,2(0) and β = b(0). We note that our approach permits us to calculate
the superpotential by the same formulae (66) and (67) as in the previous section but now
the parameters are not independent anymore, they should satisfy condition (78). With the
identification x0 = 0 and 4κ1κ2/β

2 = (q0 + 1/q0)
2 this leads to an exactly solvable model

used in [11] to construct an analytical model for the Feshbach-resonance phenomenon.
Theorem 1 implies that U(∞) = diag(κ1,−κ2) which is clearly seen from (76). The

value U(0) is given by the same formula (76) with the replacement x → x0 and q → q0.
Therefore applying proposition 1 one gets the Jost matrix

F̃ (k) =




α1 − ik1

κ1 − ik1

β

κ1 − ik1

− β

κ2 + ik2
−α2 − ik2

κ2 + ik2


 , (79)

which differs from (68) because of the different asymptotic form of the superpotential at
infinity.

Let us now construct an explicit example that illustrates the strong impact of U(∞) on
the scattering matrix. In figure 3, a potential is constructed with the same parameters as in
figures 1 and 2, except for the factorization wave number which is now chosen in order to
satisfy condition (78), κ2 ≈ 2.194 675 . . . When κ2 is smaller than this limit, the potential
becomes singular, a case we want to avoid here. Figures 1(a), 2(a) and 3(a) show that when
κ2 approaches this limit value from above, the well in potential Ṽ22 goes to infinity and finally
disappears when κ2 actually reaches the limit value. As long as κ2 > 2.194 675 . . . , this well
movement in Ṽ22 has practically no impact on the scattering matrix: the potentials are nearly
phase equivalent with each other. In contrast, when the well disappears, a strong change of
behaviour is observed, as seen in figure 3(b): while the Feshbach resonance still keeps the
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same energy and width, the slope of δ2 at zero energy becomes small and positive. Above
threshold, δ2 has now a value very close to δ1 of figures 1(b) and 2(b), with a large negative
slope. Though δ2 is continuous at threshold, it now has a strong cusp effect. The mixing
parameter, which was close to zero, now gets close to −π/2, while δ1 gets very small. The
rank of C, and hence U(∞), thus have a strong qualitative effect on the scattering matrix,
which displays very different behaviours in both cases; for practical applications, e.g. for
fitting actual scattering data with such potentials, both behaviours might be of interest.

Let us finally remark that the behaviour U(∞) = diag(κ1,−κ2) agrees with the result
obtained in [8] for N = 2 in the context of a bound-state removal by supersymmetric quantum
mechanics. There, the factorization matrix solution is made of one increasing and one
decreasing vector solution at infinity, which corresponds to rank C = 1. In [8], this result is
even generalized to N channels and a diagonal matrix for U(∞) is found, with all positive
elements but one, corresponding to the channel with the lowest threshold. However, the
general situation is more complicated, as described by our theorem 2: there may be more than
one negative element in the asymptotic form of the superpotential and the lowest channel may
correspond to a positive asymptotic entry of the superpotential. This possibility is illustrated
by our last example.

5.3. The 3 × 3 model with rank C = 2

Here we choose κ1 > κ3 > κ2, rank C = 2 so that matrix Q0 is the row Q0 = (q0, 0). Such a
choice of Q0 reflects the fact that the third row of C is proportional to its first row (see (29)).
The adopted order of thresholds corresponds to κ ′ = diag(κ1, κ2) and κ ′′ = κ3. For simplicity
only (equal) off-diagonal entries of 2 × 2 matrix X0 from proposition 1 are chosen different
of zero which we denote x0. Then applying (53) we obtain

U = −κ +
2

det σ
κ1/2




1 −x q

−x 1 + q2 −xq

q −xq q2


 κ1/2, (80)

where det σ = 1 + q2 − x2, x = x0 exp(−κ1r − κ2r), q = q0 exp(κ3r − κ1r). The condition
det σ �= 0 ∀r ∈ [0,∞) is satisfied if q2

0 > x2
0 − 1. It is clearly seen here that at r → ∞ both q

and x vanish and the asymptotic form of U,Uas = diag(κ1, κ2,−κ3), agrees with theorem 2.

6. Conclusion and perspectives

In conclusion, supersymmetric quantum mechanics is a promising tool to pragmatically solve
the inelastic coupled-channel inverse problem, thanks to its ability to construct sophisticated
exactly solvable models. The present work is only a starting point to the general study of
supersymmetric transformations in the multichannel case: by focusing on the asymptotic
behaviour of the superpotential, it reveals the richness of possible behaviours, as compared
with the single-channel case.

We have made a rigorous study of this asymptotic behaviour for a general supersymmetric
transformation. Our theorem generalizes a result found in the literature [8–10]: there may be
several negative elements in the asymptotic form of the superpotential and the lowest threshold
may produce either a positive (as shown explicitly by our example 5.3) or a negative entry.

As a byproduct of our proof, we have been able to construct exactly solvable potentials that
are supersymmetric partners of the zero potential. Essential simplifications occur when each
element of the factorization matrix solution is either an increasing or a decreasing exponential
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(not a linear combination of both types). Explicit examples have been given for two and three
channels.

Future work should focus on both the behaviour of the superpotential at the origin
and at infinity in the general case: arbitrary number of channels, with equal and/or
different thresholds, and arbitrary rank for the matrices multiplying the regular and singular
solutions in the factorization matrix solution. On the other hand, iterations of coupled-
channel supersymmetric transformations should be studied, which should eventually lead to
a satisfactory solution of the coupled-channel inverse problem, with and without threshold
difference.
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